KNN and Naïve Bayes

School of Electrical and Computer Engineering
University of Tehran
Erfan Darzi

erfandarzi@ut.ac.ir

Today's lecture

- Instance-based classifiers
 - k nearest neighbors
 - Non-parametric learning algorithm
- Model-based classifiers
 - Naïve Bayes classifier
 - A generative model
 - Parametric learning algorithm

How to classify this document?

Let's check the nearest neighbor

Let's check more nearest neighbors

Ask k nearest neighbors

Probabilistic interpretation of kNN

- Approximate Bayes decision rule in a subset of data around the testing point
- Let V be the volume of the m dimensional ball around x containing the k nearest neighbors Nearest neighbors for x, we have from class 1

$$p(x)V = \frac{k}{N} \implies p(x) = \frac{k}{NV} \qquad p(x|y=1) = \frac{k_1}{N_1V} \qquad p(y=1) = \frac{N_1}{N}$$
Total number of instances

With Bayes rule:

le:
$$p(y = 1|x) = \frac{\frac{N_1}{N} \times \frac{k_1}{N_1 V}}{\frac{k}{NV}} = \frac{k_1}{k}$$

Total number of instances in class 1

Counting the nearest neighbors from class:

kNN is close to optimal

- Asymptotically, the error rate of 1-nearestneighbor classification is less than twice of the Bayes error rate
- Decision boundary
 - 1NN Voronoi tessellation

A non-parametric estimation of posterior distribution

Components in kNN

- A distance metric
 - Euclidean distance/cosine similarity
- How many nearby neighbors to look at
 - -k
- Instance look up
 - Efficiently search nearby points

 Choice of k influences the "smoothness" of the resulting classifier

 Choice of k influences the "smoothness" of the resulting classifier

 Choice of k influences the "smoothness" of the resulting classifier

k=5

- Large k -> smooth shape for decision boundary
- Small k -> complicated decision boundary

- Recall MP1
 - In Yelp_small data set, there are 629K reviews for training and 174K reviews for testing
 - Assume we have a vocabulary of 15K
 - Complexity of kNN

- Exact solutions
 - Build inverted index for text documents
 - Special mapping: word -> document list
 - Speed-up is limited when average document length is large

- Exact solutions
 - Build inverted index for text documents
 - Special mapping: word -> document list
 - Speed-up is limited when average document length is large
 - Parallelize the computation
 - Map-Reduce
 - Map training/testing data onto different reducers
 - Merge the nearest k neighbors from the reducers

- Approximate solution
 - Locality sensitive hashing
 - Similar documents -> (likely) same hash values

- Approximate solution
 - Locality sensitive hashing
 - Similar documents -> (likely) same hash values
 - Construct the hash function such that similar items map to the same "buckets" with a <u>high probability</u>
 - Learning-based: learn the hash function with annotated examples, e.g., must-link, cannot-link
 - Random projection

Recap: probabilistic interpretation of **kNN**

- Approximate Bayes decision rule in a subset of data around the testing point
- Let V be the volume of the m dimensional ball around x containing the k nearest neighbors Nearest neighbors for x, we have from class 1

$$p(x)V = \frac{k}{N} \implies p(x) = \frac{k}{NV} \qquad p(x|y=1) = \frac{k_1}{N_1V} \qquad p(y=1) = \frac{N_1}{N}$$
Total number of instances

With Bayes rule:

le:
$$p(y = 1|x) = \frac{\frac{N_1}{N} \times \frac{k_1}{N_1 V}}{\frac{k}{NV}} = \frac{k_1}{k}$$

Total number of instances in class 1

Counting the nearest neighbors from class:

Recap: effect of k

- Large k -> smooth shape for decision boundary
- Small k -> complicated decision boundary

Recap: efficient instance look-up

- Approximate solution
 - Locality sensitive hashing
 - Similar documents -> (likely) same hash values

Random projection

- Approximate the cosine similarity between vectors
 - $-h^{r}(x) = sgn(x \cdot r)$, r is a **random** unit vector
 - Each r defines one hash function, i.e., one bit in the hash value r_1 r_2 r_3

	r_1	r_2	r_3
D_{x}	1	1	0
D_y	1	0	1

Random projection

- Approximate the cosine similarity between vectors
 - $-h^{r}(x) = sgn(x \cdot r)$, r is a random unit vector
 - Each r defines one hash function, i.e., one bit in the hash value r_1 r_2 r_3

	r_1	r_2	r_3
D_{x}	1	0	1
$D_{\mathcal{Y}}$	1	0	1

Random projection

- Approximate the cosine similarity between vectors
 - $-h^{r}(x) = sgn(x \cdot r)$, r is a random unit vector
 - Each r defines one hash function, i.e., one bit in the hash value
 - Provable approximation error

•
$$P(h(x) = h(y)) = 1 - \frac{\theta(x,y)}{\pi}$$

- Effectiveness of random projection
 - 1.2M images + 1000 dimensions

Weight the nearby instances

- When the data distribution is highly skewed, frequent classes might dominate majority vote
 - They occur more often in the k nearest neighbors just because they have large volume

Weight the nearby instances

- When the data distribution is highly skewed, frequent classes might dominate majority vote
 - They occur more often in the k nearest neighbors just because they have large volume
- Solution
 - Weight the neighbors in voting

•
$$w(x, x_i) = \frac{1}{|x - x_i|} \text{ or } w(x, x_i) = \cos(x, x_i)$$

Summary of kNN

- Instance-based learning
 - No training phase
 - Assign label to a testing case by its nearest neighbors
 - Non-parametric
 - Approximate Bayes decision boundary in a local region
- Efficient computation
 - Locality sensitive hashing
 - Random projection

Recall optimal Bayes decision boundary

• $f(X) = argmax_y P(y|X)$

Estimating the optimal classifier

•
$$f(X) = argmax_y P(y|X)$$
 Requirement:
 $= argmax_y P(X|y) P(y)$ |D|>>|Y|×(2^V - 1)

#parameters:

$$|Y| \times (2^V - 1)$$

Class conditional density

$$|Y| - 1$$

Class prior

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious	Υ
D1	1	1	1	1	0	1	1	1	0	0	0	1
D2	1	1	0	0	1	1	1	0	1	0	0	1
D3	0	0	0	0	0	1	0	0	0	1	1	0

We need to simplify this

 Features are <u>conditionally</u> independent given class labels

$$-p(x_1, x_2|y) = p(x_2|x_1, y)p(x_1|y)$$
$$= p(x_2|y)p(x_1|y)$$

- E.g.,
 p('white house', 'obama'|political news) =
 p('white house'|political news) ×
 p('obama'|political news)

Conditional v.s. marginal independence

- Features are not necessarily marginally independent from each other
 - p(`white house'|`obama') > p(`white house')
- However, once we know the class label, features become independent from each other
 - Knowing it is already political news, observing 'obama' contributes little about occurrence of 'while house'

Naïve Bayes classifier

•
$$f(X) = argmax_y P(y|X)$$

 $= argmax_y P(X|y)P(y)$
 $= argmax_y \prod_{i=1}^{V} P(x_i|y) P(y)$
Class conditional density Class prior
#parameters: $|Y| \times V$ $|Y| - 1$
v.s. $|Y| \times (2^V - 1)$ Computationally feasible

Naïve Bayes classifier

•
$$f(X) = argmax_y P(y|X)$$

 $= argmax_y P(X|y)P(y)$ By Bayes rule
 $= argmax_y \prod_{i=1}^{V} P(x_i|y) P(y)$

By conditional independence assumption

Estimating parameters

Maximial likelihood estimator

$$-P(x_i|y)$$

$$-P(y)$$

	text	information	identify	mining	mined	is	useful	to	from	apple	delicious	Υ
D1	1	1	1	1	0	1	1	1	0	0	0	1
D2	1	1	0	0	1	1	1	0	1	0	0	1
D3	0	0	0	0	0	1	0	0	0	1	1	0

Enhancing Naïve Bayes for text classification I

The frequency of words in a document matters

$$-P(X|y) = \prod_{i=1}^{|d|} P(x_i|y)^{c(x_i,d)}$$

— In log space Essentially, estimating |Y| different language models!

•
$$f(y,X) = argmax_y \log P(y|X)$$

$$= argmax_y \log P(y) + \sum_{i=1}^{|d|} c(x_i,d) \log P(x_i|y)$$
Class bias

Class bias

Class bias

Feature vector Model parameter

Enhancing Naïve Bayes for text classification I

For binary case

$$-f(X) = sgn\left(\log \frac{P(y=1|X)}{P(y=0|X)}\right)$$

$$= sgn\left(\log \frac{P(y=1)}{P(y=0)} + \sum_{i=1}^{|d|} c(x_i, d) \log \frac{P(x_i|y=1)}{P(x_i|y=0)}\right)$$

$$= sgn(w^T \bar{x})$$
a linear model with vector space representation?

where

$$w = \left(\log \frac{P(y=1)}{P(y=0)}, \log \frac{P(x_1|y=1)}{P(x_1|y=0)}, \dots, \log \frac{P(x_v|y=1)}{P(x_v|y=0)}\right)$$

$$\bar{x} = (1, c(x_1, d), \dots, c(x_v, d))$$

We will come back to this topic later.

Enhancing Naïve Bayes for text classification II

Usually, features are not conditionally independent

$$-p(X|y) \neq \prod_{i=1}^{|d|} P(x_i|y)$$

 Enhance the conditional independence assumptions by N-gram language models

$$-p(X|y) = \prod_{i=1}^{|d|} P(x_i|x_{i-1}, \dots, x_{i-N+1}, y)$$

Enhancing Naïve Bayes for text classification III

Sparse observation

$$-\delta(x_d^j = w_i, y_d = y) = 0 \Rightarrow p(x_i|y) = 0$$

- Then, no matter what values the other features take, $p(x_1, ..., x_i, ..., x_V | y) = 0$
- Smoothing class conditional density
 - All smoothing techniques we have discussed in language models are applicable here

